Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 551-559.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present an example of a complete $\aleph_0$-bounded topological group $H$ which is not $\Bbb R$-factorizable. In addition, every $G_\delta$-set in the group $H$ is open, but $H$ is not Lindelöf.
Classification : 22A05, 54D20, 54G10, 54G20, 54H11
Keywords: $\Bbb R$-factorizable group; $\aleph_0$-bounded group; $P$-group; complete; Lindelöf
@article{CMUC_2001__42_3_a13,
     author = {Tkachenko, M. G.},
     title = {Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {551--559},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860244},
     zbl = {1053.54045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/}
}
TY  - JOUR
AU  - Tkachenko, M. G.
TI  - Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 551
EP  - 559
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/
LA  - en
ID  - CMUC_2001__42_3_a13
ER  - 
%0 Journal Article
%A Tkachenko, M. G.
%T Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 551-559
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/
%G en
%F CMUC_2001__42_3_a13
Tkachenko, M. G. Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 551-559. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/