Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 551-559
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We present an example of a complete $\aleph_0$-bounded topological group $H$ which is not $\Bbb R$-factorizable. In addition, every $G_\delta$-set in the group $H$ is open, but $H$ is not Lindelöf.
Classification :
22A05, 54D20, 54G10, 54G20, 54H11
Keywords: $\Bbb R$-factorizable group; $\aleph_0$-bounded group; $P$-group; complete; Lindelöf
Keywords: $\Bbb R$-factorizable group; $\aleph_0$-bounded group; $P$-group; complete; Lindelöf
@article{CMUC_2001__42_3_a13,
author = {Tkachenko, M. G.},
title = {Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {551--559},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2001},
mrnumber = {1860244},
zbl = {1053.54045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/}
}
TY - JOUR AU - Tkachenko, M. G. TI - Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 551 EP - 559 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/ LA - en ID - CMUC_2001__42_3_a13 ER -
Tkachenko, M. G. Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 551-559. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a13/