An answer to a question of Arhangel'skii
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 545-550.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx_{l} C_p(X)$ but $C_p(X\times S) \not\approx_{l} C_p(X)$ where $S = (\{0\}\cup\{\frac{1}{n+1}:n\in\omega \})$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel'skii ([2, Problem 4]).
Classification : 46E10, 54C35
Keywords: topology of pointwise convergence
@article{CMUC_2001__42_3_a12,
     author = {Michalewski, Henryk},
     title = {An answer to a question of {Arhangel'skii}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {545--550},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860243},
     zbl = {1053.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a12/}
}
TY  - JOUR
AU  - Michalewski, Henryk
TI  - An answer to a question of Arhangel'skii
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 545
EP  - 550
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a12/
LA  - en
ID  - CMUC_2001__42_3_a12
ER  - 
%0 Journal Article
%A Michalewski, Henryk
%T An answer to a question of Arhangel'skii
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 545-550
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a12/
%G en
%F CMUC_2001__42_3_a12
Michalewski, Henryk. An answer to a question of Arhangel'skii. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 545-550. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a12/