An example of a space whose all continuous mappings are almost injective
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 535-544.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that all continuous maps of a space $X$ onto second countable spaces are pseudo-open if and only if every discrete family of nonempty $G_\delta $-subsets of $X$ is finite. We also prove under CH that there exists a dense subspace $X$ of the real line $\Bbb R$, such that every continuous map of $X$ is almost injective and $X$ cannot be represented as $K\cup Y$, where $K$ is compact and $Y$ is countable. This partially answers a question of V.V. Tkachuk in [Tk]. We show that for a compact $X$, all continuous maps of $X$ onto second countable spaces are almost injective if and only if it is scattered. We give an example of a non-compact space $Z$ such that every continuous map of $Z$ onto a second countable space is almost injective but $Z$ is not scattered.
Classification : 54C10, 54D18, 54D20, 54D30, 54E52
Keywords: almost compact map; pseudo-open map; almost injective map; discrete family; scattered
@article{CMUC_2001__42_3_a11,
     author = {Iturralde, Pablo Mendoza},
     title = {An example of a space whose all continuous mappings are almost injective},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {535--544},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860242},
     zbl = {1053.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/}
}
TY  - JOUR
AU  - Iturralde, Pablo Mendoza
TI  - An example of a space whose all continuous mappings are almost injective
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 535
EP  - 544
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/
LA  - en
ID  - CMUC_2001__42_3_a11
ER  - 
%0 Journal Article
%A Iturralde, Pablo Mendoza
%T An example of a space whose all continuous mappings are almost injective
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 535-544
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/
%G en
%F CMUC_2001__42_3_a11
Iturralde, Pablo Mendoza. An example of a space whose all continuous mappings are almost injective. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 535-544. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/