An example of a space whose all continuous mappings are almost injective
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 535-544
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that all continuous maps of a space $X$ onto second countable spaces are pseudo-open if and only if every discrete family of nonempty $G_\delta $-subsets of $X$ is finite. We also prove under CH that there exists a dense subspace $X$ of the real line $\Bbb R$, such that every continuous map of $X$ is almost injective and $X$ cannot be represented as $K\cup Y$, where $K$ is compact and $Y$ is countable. This partially answers a question of V.V. Tkachuk in [Tk]. We show that for a compact $X$, all continuous maps of $X$ onto second countable spaces are almost injective if and only if it is scattered. We give an example of a non-compact space $Z$ such that every continuous map of $Z$ onto a second countable space is almost injective but $Z$ is not scattered.
Classification :
54C10, 54D18, 54D20, 54D30, 54E52
Keywords: almost compact map; pseudo-open map; almost injective map; discrete family; scattered
Keywords: almost compact map; pseudo-open map; almost injective map; discrete family; scattered
@article{CMUC_2001__42_3_a11,
author = {Iturralde, Pablo Mendoza},
title = {An example of a space whose all continuous mappings are almost injective},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {535--544},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2001},
mrnumber = {1860242},
zbl = {1053.54022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/}
}
TY - JOUR AU - Iturralde, Pablo Mendoza TI - An example of a space whose all continuous mappings are almost injective JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 535 EP - 544 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/ LA - en ID - CMUC_2001__42_3_a11 ER -
%0 Journal Article %A Iturralde, Pablo Mendoza %T An example of a space whose all continuous mappings are almost injective %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 535-544 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/ %G en %F CMUC_2001__42_3_a11
Iturralde, Pablo Mendoza. An example of a space whose all continuous mappings are almost injective. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 535-544. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a11/