Condensations of Tychonoff universal topological algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 529-533.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(L,\Cal T)$ be a Tychonoff (regular) paratopological group or algebra over a field or ring $K$ or a topological semigroup. If $\operatorname{nw}(L,\Cal T)\leq \tau$ and $\operatorname{nw}(K)\leq\tau $, then there exists a Tychonoff (regular) topology $\Cal T^*\subseteq \Cal T$ such that $w(L,\Cal T^*)\leq\tau$ and $(L,\Cal T^*)$ is a paratopological group, algebra over $K$ or a topological semigroup respectively.
Classification : 22A05, 22D05, 54C50, 54H11
Keywords: universal algebra; paratopological group; topological group
@article{CMUC_2001__42_3_a10,
     author = {Hern\'andez, Constancio},
     title = {Condensations of {Tychonoff} universal topological algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {529--533},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860241},
     zbl = {1053.54044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a10/}
}
TY  - JOUR
AU  - Hernández, Constancio
TI  - Condensations of Tychonoff universal topological algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 529
EP  - 533
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a10/
LA  - en
ID  - CMUC_2001__42_3_a10
ER  - 
%0 Journal Article
%A Hernández, Constancio
%T Condensations of Tychonoff universal topological algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 529-533
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a10/
%G en
%F CMUC_2001__42_3_a10
Hernández, Constancio. Condensations of Tychonoff universal topological algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 529-533. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a10/