Non-autonomous vector integral equations with discontinuous right-hand side
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 319-329
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We deal with the integral equation $u(t)=f(t,\int_I g(t,z)u(z)\,dz)$, with $t\in I:=[0,1]$, $f:I\times \Bbb R^n \to \Bbb R^n$ and $g:I\times I\to[0,+\infty[$. We prove an existence theorem for solutions $u\in L^s(I,\Bbb R^n)$, $s\in \,]1,+\infty]$, where $f$ is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where $f$ does not depend explicitly on the first variable $t\in I$.
Classification :
45G10, 45P05, 47H15, 47J05, 47N20
Keywords: vector integral equations; discontinuity; multifunctions; operator inclusions
Keywords: vector integral equations; discontinuity; multifunctions; operator inclusions
@article{CMUC_2001__42_2_a8,
author = {Cubiotti, Paolo},
title = {Non-autonomous vector integral equations with discontinuous right-hand side},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {319--329},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2001},
mrnumber = {1832150},
zbl = {1055.45004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a8/}
}
TY - JOUR AU - Cubiotti, Paolo TI - Non-autonomous vector integral equations with discontinuous right-hand side JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 319 EP - 329 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a8/ LA - en ID - CMUC_2001__42_2_a8 ER -
Cubiotti, Paolo. Non-autonomous vector integral equations with discontinuous right-hand side. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 319-329. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a8/