On maximal functions over circular sectors with rotation invariant measures
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 311-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a rotation invariant measure in $\Bbb R^n$, we define the maximal operator over circular sectors. We prove that it is of strong type $(p,p)$ for $p>1$ and we give necessary and sufficient conditions on the measure for the weak type $(1,1)$ inequality. Actually we work in a more general setting containing the above and other situations.
Classification : 42B25, 43A85
Keywords: maximal functions; spaces of homogeneous type
@article{CMUC_2001__42_2_a7,
     author = {Aimar, H. and Forzani, L. and Naibo, V.},
     title = {On maximal functions over circular sectors with rotation invariant measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {311--318},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2001},
     mrnumber = {1832149},
     zbl = {1054.42014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/}
}
TY  - JOUR
AU  - Aimar, H.
AU  - Forzani, L.
AU  - Naibo, V.
TI  - On maximal functions over circular sectors with rotation invariant measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 311
EP  - 318
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/
LA  - en
ID  - CMUC_2001__42_2_a7
ER  - 
%0 Journal Article
%A Aimar, H.
%A Forzani, L.
%A Naibo, V.
%T On maximal functions over circular sectors with rotation invariant measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 311-318
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/
%G en
%F CMUC_2001__42_2_a7
Aimar, H.; Forzani, L.; Naibo, V. On maximal functions over circular sectors with rotation invariant measures. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 311-318. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/