On maximal functions over circular sectors with rotation invariant measures
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 311-318
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a rotation invariant measure in $\Bbb R^n$, we define the maximal operator over circular sectors. We prove that it is of strong type $(p,p)$ for $p>1$ and we give necessary and sufficient conditions on the measure for the weak type $(1,1)$ inequality. Actually we work in a more general setting containing the above and other situations.
@article{CMUC_2001__42_2_a7,
author = {Aimar, H. and Forzani, L. and Naibo, V.},
title = {On maximal functions over circular sectors with rotation invariant measures},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {311--318},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2001},
mrnumber = {1832149},
zbl = {1054.42014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/}
}
TY - JOUR AU - Aimar, H. AU - Forzani, L. AU - Naibo, V. TI - On maximal functions over circular sectors with rotation invariant measures JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 311 EP - 318 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/ LA - en ID - CMUC_2001__42_2_a7 ER -
%0 Journal Article %A Aimar, H. %A Forzani, L. %A Naibo, V. %T On maximal functions over circular sectors with rotation invariant measures %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 311-318 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/ %G en %F CMUC_2001__42_2_a7
Aimar, H.; Forzani, L.; Naibo, V. On maximal functions over circular sectors with rotation invariant measures. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 311-318. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a7/