Kneser-type theorem for the Darboux problem in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 267-279.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.
Classification : 35L90, 35R20, 46G10
Keywords: Pettis integral; Fubini theorem; Darboux problem; measure of weak noncompactness
@article{CMUC_2001__42_2_a4,
     author = {Cicho\'n, Mieczys{\l}aw and Kubiaczyk, Ireneusz},
     title = {Kneser-type theorem for the {Darboux} problem in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2001},
     mrnumber = {1832146},
     zbl = {1115.35141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/}
}
TY  - JOUR
AU  - Cichoń, Mieczysław
AU  - Kubiaczyk, Ireneusz
TI  - Kneser-type theorem for the Darboux problem in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 267
EP  - 279
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/
LA  - en
ID  - CMUC_2001__42_2_a4
ER  - 
%0 Journal Article
%A Cichoń, Mieczysław
%A Kubiaczyk, Ireneusz
%T Kneser-type theorem for the Darboux problem in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 267-279
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/
%G en
%F CMUC_2001__42_2_a4
Cichoń, Mieczysław; Kubiaczyk, Ireneusz. Kneser-type theorem for the Darboux problem in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/