Kneser-type theorem for the Darboux problem in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 267-279
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.
Classification :
35L90, 35R20, 46G10
Keywords: Pettis integral; Fubini theorem; Darboux problem; measure of weak noncompactness
Keywords: Pettis integral; Fubini theorem; Darboux problem; measure of weak noncompactness
@article{CMUC_2001__42_2_a4,
author = {Cicho\'n, Mieczys{\l}aw and Kubiaczyk, Ireneusz},
title = {Kneser-type theorem for the {Darboux} problem in {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {267--279},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2001},
mrnumber = {1832146},
zbl = {1115.35141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/}
}
TY - JOUR AU - Cichoń, Mieczysław AU - Kubiaczyk, Ireneusz TI - Kneser-type theorem for the Darboux problem in Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 267 EP - 279 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/ LA - en ID - CMUC_2001__42_2_a4 ER -
%0 Journal Article %A Cichoń, Mieczysław %A Kubiaczyk, Ireneusz %T Kneser-type theorem for the Darboux problem in Banach spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 267-279 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/ %G en %F CMUC_2001__42_2_a4
Cichoń, Mieczysław; Kubiaczyk, Ireneusz. Kneser-type theorem for the Darboux problem in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a4/