Centralizers on semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 237-245
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer.
Classification :
16A12, 16A68, 16A72, 16N60, 16W10, 16W20
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; Jordan triple derivation; left (right) centralizer; left (right) Jordan centralizer; centralizer
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; Jordan triple derivation; left (right) centralizer; left (right) Jordan centralizer; centralizer
@article{CMUC_2001__42_2_a1,
author = {Vukman, Joso},
title = {Centralizers on semiprime rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {237--245},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2001},
mrnumber = {1832143},
zbl = {1057.16029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/}
}
Vukman, Joso. Centralizers on semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 237-245. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/