Centralizers on semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 237-245.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping. Suppose that $T(xyx) = xT(y)x$ holds for all $x,y\in R$. In this case $T$ is a centralizer.
Classification : 16A12, 16A68, 16A72, 16N60, 16W10, 16W20
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; Jordan triple derivation; left (right) centralizer; left (right) Jordan centralizer; centralizer
@article{CMUC_2001__42_2_a1,
     author = {Vukman, Joso},
     title = {Centralizers on semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {237--245},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2001},
     mrnumber = {1832143},
     zbl = {1057.16029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/}
}
TY  - JOUR
AU  - Vukman, Joso
TI  - Centralizers on semiprime rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 237
EP  - 245
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/
LA  - en
ID  - CMUC_2001__42_2_a1
ER  - 
%0 Journal Article
%A Vukman, Joso
%T Centralizers on semiprime rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 237-245
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/
%G en
%F CMUC_2001__42_2_a1
Vukman, Joso. Centralizers on semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 2, pp. 237-245. http://geodesic.mathdoc.fr/item/CMUC_2001__42_2_a1/