The property ($\beta $) of Orlicz-Bochner sequence spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 119-132.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.
Classification : 46B20, 46B45, 46E30, 46E40
Keywords: Orlicz-Bochner space; property $(\beta )$; Orlicz space
@article{CMUC_2001__42_1_a8,
     author = {Kolwicz, Pawe{\l}},
     title = {The property ($\beta $) of {Orlicz-Bochner} sequence spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2001},
     mrnumber = {1825377},
     zbl = {1056.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a8/}
}
TY  - JOUR
AU  - Kolwicz, Paweł
TI  - The property ($\beta $) of Orlicz-Bochner sequence spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 119
EP  - 132
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a8/
LA  - en
ID  - CMUC_2001__42_1_a8
ER  - 
%0 Journal Article
%A Kolwicz, Paweł
%T The property ($\beta $) of Orlicz-Bochner sequence spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 119-132
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a8/
%G en
%F CMUC_2001__42_1_a8
Kolwicz, Paweł. The property ($\beta $) of Orlicz-Bochner sequence spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 119-132. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a8/