On Kelvin type transformation for Weinstein operator
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 99-109.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator $W_k:=\Delta+\frac k{x_n}\frac{\partial}{\partial x_n}$ on $\Bbb R^n$ is proved. In this note there is shown that in the cases $k\neq 0$, $k\neq 2$ no other transforms of this kind exist and for case $k=2$, all such transforms are described.
Classification : 31B05, 35B05, 35J15
Keywords: harmonic morphisms; Kelvin transform; Weinstein operator
@article{CMUC_2001__42_1_a6,
     author = {\v{S}im\r{u}nkov\'a, Martina},
     title = {On {Kelvin} type transformation for {Weinstein} operator},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2001},
     mrnumber = {1825375},
     zbl = {1115.31002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/}
}
TY  - JOUR
AU  - Šimůnková, Martina
TI  - On Kelvin type transformation for Weinstein operator
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 99
EP  - 109
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/
LA  - en
ID  - CMUC_2001__42_1_a6
ER  - 
%0 Journal Article
%A Šimůnková, Martina
%T On Kelvin type transformation for Weinstein operator
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 99-109
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/
%G en
%F CMUC_2001__42_1_a6
Šimůnková, Martina. On Kelvin type transformation for Weinstein operator. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/