On Kelvin type transformation for Weinstein operator
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 99-109
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator $W_k:=\Delta+\frac k{x_n}\frac{\partial}{\partial x_n}$ on $\Bbb R^n$ is proved. In this note there is shown that in the cases $k\neq 0$, $k\neq 2$ no other transforms of this kind exist and for case $k=2$, all such transforms are described.
Classification :
31B05, 35B05, 35J15
Keywords: harmonic morphisms; Kelvin transform; Weinstein operator
Keywords: harmonic morphisms; Kelvin transform; Weinstein operator
@article{CMUC_2001__42_1_a6,
author = {\v{S}im\r{u}nkov\'a, Martina},
title = {On {Kelvin} type transformation for {Weinstein} operator},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {99--109},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2001},
mrnumber = {1825375},
zbl = {1115.31002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/}
}
Šimůnková, Martina. On Kelvin type transformation for Weinstein operator. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a6/