On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 83-98.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.
Classification : 35B05, 35Q30, 76N10
Keywords: compressible flow; weak solutions; compactness
@article{CMUC_2001__42_1_a5,
     author = {Feireisl, Eduard},
     title = {On compactness of solutions to the compressible isentropic {Navier-Stokes} equations when the density is not square integrable},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {83--98},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2001},
     mrnumber = {1825374},
     zbl = {1115.35096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a5/}
}
TY  - JOUR
AU  - Feireisl, Eduard
TI  - On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 83
EP  - 98
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a5/
LA  - en
ID  - CMUC_2001__42_1_a5
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%T On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 83-98
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a5/
%G en
%F CMUC_2001__42_1_a5
Feireisl, Eduard. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 83-98. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a5/