Two spaces homeomorphic to $Seq(p)$
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 209-218.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.
Classification : 54A35, 54C05, 54D80, 54G05, 54H11
Keywords: ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters
@article{CMUC_2001__42_1_a16,
     author = {Vaughan, Jerry E.},
     title = {Two spaces homeomorphic to $Seq(p)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2001},
     mrnumber = {1825385},
     zbl = {1053.54033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a16/}
}
TY  - JOUR
AU  - Vaughan, Jerry E.
TI  - Two spaces homeomorphic to $Seq(p)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 209
EP  - 218
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a16/
LA  - en
ID  - CMUC_2001__42_1_a16
ER  - 
%0 Journal Article
%A Vaughan, Jerry E.
%T Two spaces homeomorphic to $Seq(p)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 209-218
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a16/
%G en
%F CMUC_2001__42_1_a16
Vaughan, Jerry E. Two spaces homeomorphic to $Seq(p)$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 209-218. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a16/