For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 153-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot|$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot|)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
Classification : 41A65, 46B03, 46B20
Keywords: renormings; non-reflexive Banach spaces; Chebyshev centers
@article{CMUC_2001__42_1_a10,
     author = {Vesel\'y, Libor},
     title = {For a dense set of equivalent norms, a non-reflexive {Banach} space contains a triangle with no {Chebyshev} center},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {153--158},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2001},
     mrnumber = {1825379},
     zbl = {1056.46009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a10/}
}
TY  - JOUR
AU  - Veselý, Libor
TI  - For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 153
EP  - 158
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a10/
LA  - en
ID  - CMUC_2001__42_1_a10
ER  - 
%0 Journal Article
%A Veselý, Libor
%T For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 153-158
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a10/
%G en
%F CMUC_2001__42_1_a10
Veselý, Libor. For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 1, pp. 153-158. http://geodesic.mathdoc.fr/item/CMUC_2001__42_1_a10/