Projections from $L(X,Y)$ onto $K(X,Y)$
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 765-771
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let $X$ and $Y$ be Banach spaces such that $X$ is weakly compactly generated Asplund space and $X^*$ has the approximation property (respectively $Y$ is weakly compactly generated Asplund space and $Y^*$ has the approximation property). Suppose that $L(X,Y)\neq K(X,Y)$ and let $1\lambda2$. Then $X$ (respectively $Y$) can be equivalently renormed so that any projection $P$ of $L(X,Y)$ onto $K(X,Y)$ has the sup-norm greater or equal to $\lambda $.
Classification :
46B28
Keywords: compact operator; approximation property; reflexive Banach space; projection; separability
Keywords: compact operator; approximation property; reflexive Banach space; projection; separability
@article{CMUC_2000__41_4_a9,
author = {John, Kamil},
title = {Projections from $L(X,Y)$ onto $K(X,Y)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {765--771},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2000},
mrnumber = {1800167},
zbl = {1050.46016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/}
}
John, Kamil. Projections from $L(X,Y)$ onto $K(X,Y)$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 765-771. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/