Projections from $L(X,Y)$ onto $K(X,Y)$
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 765-771.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let $X$ and $Y$ be Banach spaces such that $X$ is weakly compactly generated Asplund space and $X^*$ has the approximation property (respectively $Y$ is weakly compactly generated Asplund space and $Y^*$ has the approximation property). Suppose that $L(X,Y)\neq K(X,Y)$ and let $1\lambda2$. Then $X$ (respectively $Y$) can be equivalently renormed so that any projection $P$ of $L(X,Y)$ onto $K(X,Y)$ has the sup-norm greater or equal to $\lambda $.
Classification : 46B28
Keywords: compact operator; approximation property; reflexive Banach space; projection; separability
@article{CMUC_2000__41_4_a9,
     author = {John, Kamil},
     title = {Projections from $L(X,Y)$ onto $K(X,Y)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {765--771},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2000},
     mrnumber = {1800167},
     zbl = {1050.46016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/}
}
TY  - JOUR
AU  - John, Kamil
TI  - Projections from $L(X,Y)$ onto $K(X,Y)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 765
EP  - 771
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/
LA  - en
ID  - CMUC_2000__41_4_a9
ER  - 
%0 Journal Article
%A John, Kamil
%T Projections from $L(X,Y)$ onto $K(X,Y)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 765-771
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/
%G en
%F CMUC_2000__41_4_a9
John, Kamil. Projections from $L(X,Y)$ onto $K(X,Y)$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 765-771. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a9/