A note on copies of $c_0$ in spaces of weak* measurable functions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 761-764.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $(\Omega,\Sigma,\mu)$ is a finite measure space and $X$ a Banach space, in this note we show that $L_{w^{\ast}}^{1}(\mu,X^{\ast})$, the Banach space of all classes of weak* equivalent $X^{\ast}$-valued weak* measurable functions $f$ defined on $\Omega$ such that $\|f(\omega )\| \leq g(\omega )$ a.e. for some $g\in L_{1}(\mu )$ equipped with its usual norm, contains a copy of $c_{0}$ if and only if $X^{\ast}$ contains a copy of $c_{0}$.
Classification : 46B20, 46E40, 46G10
Keywords: weak* measurable function; copy of $c_0$; copy of $\ell_1$
@article{CMUC_2000__41_4_a8,
     author = {Ferrando, J. C.},
     title = {A note on copies of $c_0$ in spaces of weak* measurable functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {761--764},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2000},
     mrnumber = {1800168},
     zbl = {1050.46512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/}
}
TY  - JOUR
AU  - Ferrando, J. C.
TI  - A note on copies of $c_0$ in spaces of weak* measurable functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 761
EP  - 764
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/
LA  - en
ID  - CMUC_2000__41_4_a8
ER  - 
%0 Journal Article
%A Ferrando, J. C.
%T A note on copies of $c_0$ in spaces of weak* measurable functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 761-764
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/
%G en
%F CMUC_2000__41_4_a8
Ferrando, J. C. A note on copies of $c_0$ in spaces of weak* measurable functions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 761-764. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/