A note on copies of $c_0$ in spaces of weak* measurable functions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 761-764
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $(\Omega,\Sigma,\mu)$ is a finite measure space and $X$ a Banach space, in this note we show that $L_{w^{\ast}}^{1}(\mu,X^{\ast})$, the Banach space of all classes of weak* equivalent $X^{\ast}$-valued weak* measurable functions $f$ defined on $\Omega$ such that $\|f(\omega )\| \leq g(\omega )$ a.e. for some $g\in L_{1}(\mu )$ equipped with its usual norm, contains a copy of $c_{0}$ if and only if $X^{\ast}$ contains a copy of $c_{0}$.
Classification :
46B20, 46E40, 46G10
Keywords: weak* measurable function; copy of $c_0$; copy of $\ell_1$
Keywords: weak* measurable function; copy of $c_0$; copy of $\ell_1$
@article{CMUC_2000__41_4_a8,
author = {Ferrando, J. C.},
title = {A note on copies of $c_0$ in spaces of weak* measurable functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {761--764},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2000},
mrnumber = {1800168},
zbl = {1050.46512},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/}
}
TY - JOUR AU - Ferrando, J. C. TI - A note on copies of $c_0$ in spaces of weak* measurable functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 761 EP - 764 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/ LA - en ID - CMUC_2000__41_4_a8 ER -
Ferrando, J. C. A note on copies of $c_0$ in spaces of weak* measurable functions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 761-764. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a8/