Products in almost $f$-algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 747-759.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ be a uniformly complete almost $f$-algebra and a natural number $p\in\{3,4,\dots \}$. Then $\Pi_{p}(A)= \{a_{1}\dots a_{p}; a_{k}\in A, k=1,\dots ,p\}$ is a uniformly complete semiprime $f$-algebra under the ordering and multiplication inherited from $A$ with $\Sigma_{p}(A)=\{a^{p}; 0\leq a\in A\}$ as positive cone.
Classification : 06F25, 46A40
Keywords: vector lattice; uniformly complete vector lattice; lattice ordered algebra; almost $f$-algebra; $d$-algebra; $f$-algebra
@article{CMUC_2000__41_4_a7,
     author = {Boulabiar, K.},
     title = {Products in almost $f$-algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {747--759},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2000},
     mrnumber = {1800169},
     zbl = {1048.06011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/}
}
TY  - JOUR
AU  - Boulabiar, K.
TI  - Products in almost $f$-algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 747
EP  - 759
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/
LA  - en
ID  - CMUC_2000__41_4_a7
ER  - 
%0 Journal Article
%A Boulabiar, K.
%T Products in almost $f$-algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 747-759
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/
%G en
%F CMUC_2000__41_4_a7
Boulabiar, K. Products in almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 747-759. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/