Products in almost $f$-algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 747-759
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A$ be a uniformly complete almost $f$-algebra and a natural number $p\in\{3,4,\dots \}$. Then $\Pi_{p}(A)= \{a_{1}\dots a_{p}; a_{k}\in A, k=1,\dots ,p\}$ is a uniformly complete semiprime $f$-algebra under the ordering and multiplication inherited from $A$ with $\Sigma_{p}(A)=\{a^{p}; 0\leq a\in A\}$ as positive cone.
Classification :
06F25, 46A40
Keywords: vector lattice; uniformly complete vector lattice; lattice ordered algebra; almost $f$-algebra; $d$-algebra; $f$-algebra
Keywords: vector lattice; uniformly complete vector lattice; lattice ordered algebra; almost $f$-algebra; $d$-algebra; $f$-algebra
@article{CMUC_2000__41_4_a7,
author = {Boulabiar, K.},
title = {Products in almost $f$-algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {747--759},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2000},
mrnumber = {1800169},
zbl = {1048.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/}
}
Boulabiar, K. Products in almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 747-759. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a7/