Hu's Primal Algebra Theorem revisited
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 855-859.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown how Lawvere's one-to-one translation between Birkhoff's description of varieties and the categorical one (see [6]) turns Hu's theorem on varieties generated by a primal algebra (see [4], [5]) into a simple reformulation of the classical representation theorem of finite Boolean algebras as powerset algebras.
Classification : 06B20, 06D25, 08A40, 08B99, 18C05
Keywords: Lawvere theory; equivalence between varieties; Hu's theorem; primal algebra; Post algebras
@article{CMUC_2000__41_4_a18,
     author = {Porst, Hans-E.},
     title = {Hu's {Primal} {Algebra} {Theorem} revisited},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {855--859},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2000},
     mrnumber = {1800177},
     zbl = {1048.08003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a18/}
}
TY  - JOUR
AU  - Porst, Hans-E.
TI  - Hu's Primal Algebra Theorem revisited
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 855
EP  - 859
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a18/
LA  - en
ID  - CMUC_2000__41_4_a18
ER  - 
%0 Journal Article
%A Porst, Hans-E.
%T Hu's Primal Algebra Theorem revisited
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 855-859
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a18/
%G en
%F CMUC_2000__41_4_a18
Porst, Hans-E. Hu's Primal Algebra Theorem revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 855-859. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a18/