Locally minimal topological groups and their embeddings into products of $o$-bounded groups
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 811-815.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proven that an infinite-dimensional Banach space (considered as an Abelian topological group) is not topologically isomorphic to a subgroup of a product of $\sigma $-compact (or more generally, $o$-bounded) topological groups. This answers a question of M. Tkachenko.
Classification : 22A05, 22E15, 54H11
Keywords: $\omega$-bounded group; $\sigma$-bounded group; $o$-bounded group; Weil complete group; locally minimal group; Lie group
@article{CMUC_2000__41_4_a13,
     author = {Banakh, T.},
     title = {Locally minimal topological groups and their embeddings into products of $o$-bounded groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {811--815},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2000},
     mrnumber = {1800163},
     zbl = {1049.54034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a13/}
}
TY  - JOUR
AU  - Banakh, T.
TI  - Locally minimal topological groups and their embeddings into products of $o$-bounded groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 811
EP  - 815
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a13/
LA  - en
ID  - CMUC_2000__41_4_a13
ER  - 
%0 Journal Article
%A Banakh, T.
%T Locally minimal topological groups and their embeddings into products of $o$-bounded groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 811-815
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a13/
%G en
%F CMUC_2000__41_4_a13
Banakh, T. Locally minimal topological groups and their embeddings into products of $o$-bounded groups. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 4, pp. 811-815. http://geodesic.mathdoc.fr/item/CMUC_2000__41_4_a13/