BGG sequences on spheres
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 509-527
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called $K$-types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described.
Classification :
22E30, 22E46, 35P15, 43A85
Keywords: BGG sequences; invariant differential operators; branching rules; $K$-types; complexes; homogeneous spaces
Keywords: BGG sequences; invariant differential operators; branching rules; $K$-types; complexes; homogeneous spaces
@article{CMUC_2000__41_3_a8,
author = {Somberg, Petr},
title = {BGG sequences on spheres},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {509--527},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2000},
mrnumber = {1795082},
zbl = {1037.43016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a8/}
}
Somberg, Petr. BGG sequences on spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 509-527. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a8/