Covering dimension and differential inclusions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 477-484.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we shall establish a result concerning the covering dimension of a set of the type $\{x\in X:\Phi (x)\cap \Psi (x)\neq \emptyset \}$, where $\Phi $, $\Psi $ are two multifunctions from $X$ into $Y$ and $X$, $Y$ are real Banach spaces. Moreover, some applications to the differential inclusions will be given.
Classification : 26E25, 34A60, 34G20, 47H04
Keywords: multifunction; Hausdorff distance; convex processes; covering dimension; differential inclusion
@article{CMUC_2000__41_3_a5,
     author = {Anello, G.},
     title = {Covering dimension and differential inclusions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {477--484},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2000},
     mrnumber = {1795079},
     zbl = {1038.47501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/}
}
TY  - JOUR
AU  - Anello, G.
TI  - Covering dimension and differential inclusions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 477
EP  - 484
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/
LA  - en
ID  - CMUC_2000__41_3_a5
ER  - 
%0 Journal Article
%A Anello, G.
%T Covering dimension and differential inclusions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 477-484
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/
%G en
%F CMUC_2000__41_3_a5
Anello, G. Covering dimension and differential inclusions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 477-484. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/