Covering dimension and differential inclusions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 477-484
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we shall establish a result concerning the covering dimension of a set of the type $\{x\in X:\Phi (x)\cap \Psi (x)\neq \emptyset \}$, where $\Phi $, $\Psi $ are two multifunctions from $X$ into $Y$ and $X$, $Y$ are real Banach spaces. Moreover, some applications to the differential inclusions will be given.
Classification :
26E25, 34A60, 34G20, 47H04
Keywords: multifunction; Hausdorff distance; convex processes; covering dimension; differential inclusion
Keywords: multifunction; Hausdorff distance; convex processes; covering dimension; differential inclusion
@article{CMUC_2000__41_3_a5,
author = {Anello, G.},
title = {Covering dimension and differential inclusions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {477--484},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2000},
mrnumber = {1795079},
zbl = {1038.47501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/}
}
Anello, G. Covering dimension and differential inclusions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 477-484. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a5/