Bounds for the spectral radius of positive operators
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 459-467.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a non-zero positive vector of a Banach lattice $L$, and let $T$ be a positive linear operator on $L$ with the spectral radius $r(T)$. We find some groups of assumptions on $L$, $T$ and $f$ under which the inequalities $$ \sup \{c \geq 0 : T f \geq c \, f\} \leq r(T) \leq \inf \{c \geq 0 : T f \leq c \, f\} $$ hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which was the motivation for this paper.
Classification : 46B42, 47A10, 47B65
Keywords: Banach lattices; positive operators; spectral radius
@article{CMUC_2000__41_3_a3,
     author = {Drnov\v{s}ek, Roman},
     title = {Bounds for the spectral radius of positive operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {459--467},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2000},
     mrnumber = {1795077},
     zbl = {1040.46021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a3/}
}
TY  - JOUR
AU  - Drnovšek, Roman
TI  - Bounds for the spectral radius of positive operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 459
EP  - 467
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a3/
LA  - en
ID  - CMUC_2000__41_3_a3
ER  - 
%0 Journal Article
%A Drnovšek, Roman
%T Bounds for the spectral radius of positive operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 459-467
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a3/
%G en
%F CMUC_2000__41_3_a3
Drnovšek, Roman. Bounds for the spectral radius of positive operators. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 459-467. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a3/