Perfect compactifications of functions
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 619-629
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that the maximal Hausdorff compactification $\chi f$ of a $T_2$-compactifi\-able mapping $f$ and the maximal Tychonoff compactification $\beta f$ of a Tychonoff mapping $f$ (see [P]) are perfect. This allows us to give a characterization of all perfect Hausdorff (respectively, all perfect Tychonoff) compactifications of a $T_2$-compactifiable (respectively, of a Tychonoff) mapping, which is a generalization of two results of Skljarenko [S] for the Hausdorff compactifications of Tychonoff spaces.
Classification :
54C05, 54C10, 54C20, 54C25, 54D15, 54D30, 54D35
Keywords: Hausdorff (Tychonoff) mapping; compactification of a mapping; maximal Hausdorff (Tychonoff) compactification of a mapping; perfect compactification of a mapping
Keywords: Hausdorff (Tychonoff) mapping; compactification of a mapping; maximal Hausdorff (Tychonoff) compactification of a mapping; perfect compactification of a mapping
@article{CMUC_2000__41_3_a17,
author = {Nordo, Giorgio and Pasynkov, Boris A.},
title = {Perfect compactifications of functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {619--629},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2000},
mrnumber = {1795091},
zbl = {1038.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a17/}
}
TY - JOUR AU - Nordo, Giorgio AU - Pasynkov, Boris A. TI - Perfect compactifications of functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 619 EP - 629 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a17/ LA - en ID - CMUC_2000__41_3_a17 ER -
Nordo, Giorgio; Pasynkov, Boris A. Perfect compactifications of functions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 619-629. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a17/