The Banach contraction mapping principle and cohomology
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 605-610.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary.
Classification : 37B25, 37B99, 47H10, 54H15, 54H20, 54H25
Keywords: $B$-system; $E$-system
@article{CMUC_2000__41_3_a15,
     author = {Jano\v{s}, Ludv{\'\i}k},
     title = {The {Banach} contraction mapping principle and cohomology},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {605--610},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2000},
     mrnumber = {1795089},
     zbl = {1087.37502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/}
}
TY  - JOUR
AU  - Janoš, Ludvík
TI  - The Banach contraction mapping principle and cohomology
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 605
EP  - 610
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/
LA  - en
ID  - CMUC_2000__41_3_a15
ER  - 
%0 Journal Article
%A Janoš, Ludvík
%T The Banach contraction mapping principle and cohomology
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 605-610
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/
%G en
%F CMUC_2000__41_3_a15
Janoš, Ludvík. The Banach contraction mapping principle and cohomology. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 605-610. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/