The Banach contraction mapping principle and cohomology
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 605-610
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary.
@article{CMUC_2000__41_3_a15,
author = {Jano\v{s}, Ludv{\'\i}k},
title = {The {Banach} contraction mapping principle and cohomology},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {605--610},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2000},
mrnumber = {1795089},
zbl = {1087.37502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/}
}
Janoš, Ludvík. The Banach contraction mapping principle and cohomology. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 605-610. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a15/