Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 585-595.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity.
Classification : 22A05, 54C35, 54C45, 54D50, 54D60, 54E15, 54G20, 54H11
Keywords: Moscow space; Dieudonné completion; Hewitt-Nachbin completion; $C$-em\-bed\-ding; $G_\delta $-dense set; topological group; Souslin number; tightness; canonical open set
@article{CMUC_2000__41_3_a13,
     author = {Arhangel'skii, A.},
     title = {Moscow spaces, {Pestov-Tka\v{c}enko} {Problem,} and $C$-embeddings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {585--595},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2000},
     mrnumber = {1795087},
     zbl = {1038.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a13/}
}
TY  - JOUR
AU  - Arhangel'skii, A.
TI  - Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 585
EP  - 595
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a13/
LA  - en
ID  - CMUC_2000__41_3_a13
ER  - 
%0 Journal Article
%A Arhangel'skii, A.
%T Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 585-595
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a13/
%G en
%F CMUC_2000__41_3_a13
Arhangel'skii, A. Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 585-595. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a13/