Smooth invariants and $\omega$-graded modules over $k[X]$
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 445-448.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that every $\omega$-graded module over $k[X]$ is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian $p$-groups.
Classification : 13F20, 16G20, 16W50, 20K10
Keywords: filtered modules; valuated groups; representations of quivers
@article{CMUC_2000__41_3_a1,
     author = {Richman, Fred},
     title = {Smooth invariants and $\omega$-graded modules over $k[X]$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {445--448},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2000},
     mrnumber = {1795075},
     zbl = {1038.16013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a1/}
}
TY  - JOUR
AU  - Richman, Fred
TI  - Smooth invariants and $\omega$-graded modules over $k[X]$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 445
EP  - 448
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a1/
LA  - en
ID  - CMUC_2000__41_3_a1
ER  - 
%0 Journal Article
%A Richman, Fred
%T Smooth invariants and $\omega$-graded modules over $k[X]$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 445-448
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a1/
%G en
%F CMUC_2000__41_3_a1
Richman, Fred. Smooth invariants and $\omega$-graded modules over $k[X]$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 3, pp. 445-448. http://geodesic.mathdoc.fr/item/CMUC_2000__41_3_a1/