Connected transversals -- the Zassenhaus case
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 299-300.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^{-1}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.
Classification : 20D60, 20E07, 20F12, 20F99, 20N05
Keywords: group; subgroup; connected transversals; core
@article{CMUC_2000__41_2_a8,
     author = {Kepka, Tom\'a\v{s} and N\v{e}mec, Petr},
     title = {Connected transversals -- the {Zassenhaus} case},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {299--300},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2000},
     mrnumber = {1780873},
     zbl = {1038.20022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/}
}
TY  - JOUR
AU  - Kepka, Tomáš
AU  - Němec, Petr
TI  - Connected transversals -- the Zassenhaus case
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 299
EP  - 300
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/
LA  - en
ID  - CMUC_2000__41_2_a8
ER  - 
%0 Journal Article
%A Kepka, Tomáš
%A Němec, Petr
%T Connected transversals -- the Zassenhaus case
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 299-300
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/
%G en
%F CMUC_2000__41_2_a8
Kepka, Tomáš; Němec, Petr. Connected transversals -- the Zassenhaus case. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 299-300. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/