Connected transversals -- the Zassenhaus case
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 299-300
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^{-1}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.
Classification :
20D60, 20E07, 20F12, 20F99, 20N05
Keywords: group; subgroup; connected transversals; core
Keywords: group; subgroup; connected transversals; core
@article{CMUC_2000__41_2_a8,
author = {Kepka, Tom\'a\v{s} and N\v{e}mec, Petr},
title = {Connected transversals -- the {Zassenhaus} case},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {299--300},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {2000},
mrnumber = {1780873},
zbl = {1038.20022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/}
}
TY - JOUR AU - Kepka, Tomáš AU - Němec, Petr TI - Connected transversals -- the Zassenhaus case JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 299 EP - 300 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/ LA - en ID - CMUC_2000__41_2_a8 ER -
Kepka, Tomáš; Němec, Petr. Connected transversals -- the Zassenhaus case. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 299-300. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a8/