A-loops close to code loops are groups
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 245-249.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $Q$ be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group.
Classification : 20N05
Keywords: A-loop; central nilpotency; Osborn problem
@article{CMUC_2000__41_2_a3,
     author = {Dr\'apal, Ale\v{s}},
     title = {A-loops close to code loops are groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {245--249},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2000},
     mrnumber = {1780868},
     zbl = {1038.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/}
}
TY  - JOUR
AU  - Drápal, Aleš
TI  - A-loops close to code loops are groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 245
EP  - 249
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/
LA  - en
ID  - CMUC_2000__41_2_a3
ER  - 
%0 Journal Article
%A Drápal, Aleš
%T A-loops close to code loops are groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 245-249
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/
%G en
%F CMUC_2000__41_2_a3
Drápal, Aleš. A-loops close to code loops are groups. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 245-249. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/