A-loops close to code loops are groups
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 245-249
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $Q$ be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group.
@article{CMUC_2000__41_2_a3,
author = {Dr\'apal, Ale\v{s}},
title = {A-loops close to code loops are groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {245--249},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {2000},
mrnumber = {1780868},
zbl = {1038.20046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/}
}
Drápal, Aleš. A-loops close to code loops are groups. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 245-249. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a3/