A class of quasigroups solving a problem of ergodic theory
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 409-414.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
Classification : 20N05, 60J10
Keywords: quasigroup; Latin square; Markov chain; doubly stochastic matrix; ergodic; superergodic; dripping faucet; group isotope; central quasigroup; semicentral quasigroup; $T$-quasigroup; left linear quasigroup
@article{CMUC_2000__41_2_a17,
     author = {Smith, Jonathan D. H.},
     title = {A class of quasigroups solving a problem of ergodic theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2000},
     mrnumber = {1780882},
     zbl = {1038.20054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/}
}
TY  - JOUR
AU  - Smith, Jonathan D. H.
TI  - A class of quasigroups solving a problem of ergodic theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 409
EP  - 414
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/
LA  - en
ID  - CMUC_2000__41_2_a17
ER  - 
%0 Journal Article
%A Smith, Jonathan D. H.
%T A class of quasigroups solving a problem of ergodic theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 409-414
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/
%G en
%F CMUC_2000__41_2_a17
Smith, Jonathan D. H. A class of quasigroups solving a problem of ergodic theory. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 409-414. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/