A class of quasigroups solving a problem of ergodic theory
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 409-414
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
Classification :
20N05, 60J10
Keywords: quasigroup; Latin square; Markov chain; doubly stochastic matrix; ergodic; superergodic; dripping faucet; group isotope; central quasigroup; semicentral quasigroup; $T$-quasigroup; left linear quasigroup
Keywords: quasigroup; Latin square; Markov chain; doubly stochastic matrix; ergodic; superergodic; dripping faucet; group isotope; central quasigroup; semicentral quasigroup; $T$-quasigroup; left linear quasigroup
@article{CMUC_2000__41_2_a17,
author = {Smith, Jonathan D. H.},
title = {A class of quasigroups solving a problem of ergodic theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {409--414},
publisher = {mathdoc},
volume = {41},
number = {2},
year = {2000},
mrnumber = {1780882},
zbl = {1038.20054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/}
}
TY - JOUR AU - Smith, Jonathan D. H. TI - A class of quasigroups solving a problem of ergodic theory JO - Commentationes Mathematicae Universitatis Carolinae PY - 2000 SP - 409 EP - 414 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/ LA - en ID - CMUC_2000__41_2_a17 ER -
Smith, Jonathan D. H. A class of quasigroups solving a problem of ergodic theory. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 2, pp. 409-414. http://geodesic.mathdoc.fr/item/CMUC_2000__41_2_a17/