Characterizations of spreading models of $l^1$
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 79-95.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Rosenthal in [11] proved that if $(f_{k})$ is a uniformly bounded sequence of real-valued functions which has no pointwise converging subsequence then $(f_{k})$ has a subsequence which is equivalent to the unit basis of $l^{1}$ in the supremum norm. Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous real-valued functions, which are defined on a compact metric space, by the aid of a countable ordinal index ``$\gamma $''. In this paper we prove some local analogues of the above Rosenthal 's theorem (spreading models of $l^{1}$) for a uniformly bounded and pointwise convergent sequence $(f_{k})$ of continuous real-valued functions on a compact metric space for which there exists a countable ordinal $\xi$ such that $\gamma ((f_{n_{k}}))> \omega^{\xi}$ for every strictly increasing sequence $(n_{k})$ of natural numbers. Also we obtain a characterization of some subclasses of Baire-1 functions by the aid of spreading models of $l^{1}$.
Classification : 46B20, 46B99, 46E15, 46E99, 54C35
Keywords: uniformly bounded sequences of continuous real-valued functions; convergence index; spreading models of $l^{1}$; Baire-1 functions
@article{CMUC_2000__41_1_a6,
     author = {Kiriakouli, P.},
     title = {Characterizations of spreading models of $l^1$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {79--95},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2000},
     mrnumber = {1756928},
     zbl = {1039.46010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a6/}
}
TY  - JOUR
AU  - Kiriakouli, P.
TI  - Characterizations of spreading models of $l^1$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 79
EP  - 95
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a6/
LA  - en
ID  - CMUC_2000__41_1_a6
ER  - 
%0 Journal Article
%A Kiriakouli, P.
%T Characterizations of spreading models of $l^1$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 79-95
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a6/
%G en
%F CMUC_2000__41_1_a6
Kiriakouli, P. Characterizations of spreading models of $l^1$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 79-95. http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a6/