Topological sequence entropy for maps of the circle
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 53-59
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.
Classification :
26A18, 37B40, 37D45, 37E10, 54H20, 58F13
Keywords: chaotic map; circle map; topological sequence entropy
Keywords: chaotic map; circle map; topological sequence entropy
@article{CMUC_2000__41_1_a4,
author = {Hric, Roman},
title = {Topological sequence entropy for maps of the circle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {53--59},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2000},
mrnumber = {1756926},
zbl = {1039.37007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/}
}
Hric, Roman. Topological sequence entropy for maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/