Topological sequence entropy for maps of the circle
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 53-59.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A continuous map $f$ of the interval is chaotic iff there is an increasing sequence of nonnegative integers $T$ such that the topological sequence entropy of $f$ relative to $T$, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers $T$ there is a chaotic map $f$ of the interval such that $h_T(f)=0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.
Classification : 26A18, 37B40, 37D45, 37E10, 54H20, 58F13
Keywords: chaotic map; circle map; topological sequence entropy
@article{CMUC_2000__41_1_a4,
     author = {Hric, Roman},
     title = {Topological sequence entropy for maps of the circle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {53--59},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2000},
     mrnumber = {1756926},
     zbl = {1039.37007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/}
}
TY  - JOUR
AU  - Hric, Roman
TI  - Topological sequence entropy for maps of the circle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
SP  - 53
EP  - 59
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/
LA  - en
ID  - CMUC_2000__41_1_a4
ER  - 
%0 Journal Article
%A Hric, Roman
%T Topological sequence entropy for maps of the circle
%J Commentationes Mathematicae Universitatis Carolinae
%D 2000
%P 53-59
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/
%G en
%F CMUC_2000__41_1_a4
Hric, Roman. Topological sequence entropy for maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a4/