Zeroes of the Bergman kernel of Hartogs domains
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 199-202
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
Classification :
32A07, 32A25, 32H10
Keywords: Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel
Keywords: Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel
@article{CMUC_2000__41_1_a19,
author = {Engli\v{s}, Miroslav},
title = {Zeroes of the {Bergman} kernel of {Hartogs} domains},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {199--202},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2000},
mrnumber = {1756941},
zbl = {1038.32002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a19/}
}
Engliš, Miroslav. Zeroes of the Bergman kernel of Hartogs domains. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/CMUC_2000__41_1_a19/