Curvature tensors and Singer invariants of four-dimensional homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 723-733
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that the Singer invariant of a four-dimensional homogeneous space is at most $1$.
@article{CMUC_1999__40_4_a9,
author = {Kiyota, Yuki and Tsukada, Kazumi},
title = {Curvature tensors and {Singer} invariants of four-dimensional homogeneous spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {723--733},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1999},
mrnumber = {1756548},
zbl = {1020.53032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a9/}
}
TY - JOUR AU - Kiyota, Yuki AU - Tsukada, Kazumi TI - Curvature tensors and Singer invariants of four-dimensional homogeneous spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 723 EP - 733 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a9/ LA - en ID - CMUC_1999__40_4_a9 ER -
%0 Journal Article %A Kiyota, Yuki %A Tsukada, Kazumi %T Curvature tensors and Singer invariants of four-dimensional homogeneous spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1999 %P 723-733 %V 40 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a9/ %G en %F CMUC_1999__40_4_a9
Kiyota, Yuki; Tsukada, Kazumi. Curvature tensors and Singer invariants of four-dimensional homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 723-733. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a9/