Infinitesimal characterization of almost Hermitian homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 713-721
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note it is shown that almost Hermitian locally homogeneous manifolds are determined, up to local isometries, by an integer $k_H$, the covariant derivatives of the curvature tensor up to order $k_H+2$ and the covariant derivatives of the complex structure up to the second order calculated at some point. An example of a Hermitian locally homogeneous manifold which is not locally isometric to any Hermitian globally homogeneous manifold is given.
Classification :
53C30, 53C55
Keywords: almost Hermitian homogeneous spaces; Singer invariant
Keywords: almost Hermitian homogeneous spaces; Singer invariant
@article{CMUC_1999__40_4_a8,
author = {Console, Sergio and Nicolodi, Lorenzo},
title = {Infinitesimal characterization of almost {Hermitian} homogeneous spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {713--721},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1999},
mrnumber = {1756547},
zbl = {1020.53031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a8/}
}
TY - JOUR AU - Console, Sergio AU - Nicolodi, Lorenzo TI - Infinitesimal characterization of almost Hermitian homogeneous spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 713 EP - 721 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a8/ LA - en ID - CMUC_1999__40_4_a8 ER -
%0 Journal Article %A Console, Sergio %A Nicolodi, Lorenzo %T Infinitesimal characterization of almost Hermitian homogeneous spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1999 %P 713-721 %V 40 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a8/ %G en %F CMUC_1999__40_4_a8
Console, Sergio; Nicolodi, Lorenzo. Infinitesimal characterization of almost Hermitian homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 713-721. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a8/