Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 651-663.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^{1,p}_0(\Omega)$ for all $1$ and, as a consequence, the Hölder regularity of the solution $u$. $\Cal L$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.
Classification : 35B65, 35J15, 35J30, 35R05, 45P05, 46E35, 46N20
Keywords: elliptic equations; Morrey spaces
@article{CMUC_1999__40_4_a4,
     author = {Ragusa, Maria Alessandra},
     title = {Elliptic boundary value problem in {Vanishing} {Mean} {Oscillation} hypothesis},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {651--663},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1756544},
     zbl = {1010.46032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a4/}
}
TY  - JOUR
AU  - Ragusa, Maria Alessandra
TI  - Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 651
EP  - 663
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a4/
LA  - en
ID  - CMUC_1999__40_4_a4
ER  - 
%0 Journal Article
%A Ragusa, Maria Alessandra
%T Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 651-663
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a4/
%G en
%F CMUC_1999__40_4_a4
Ragusa, Maria Alessandra. Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 651-663. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a4/