A note on intermediate differentiability of Lipschitz functions
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 795-799.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a Lipschitz function on a superreflexive Banach space $X$. We prove that then the set of points of $X$ at which $f$ has no intermediate derivative is not only a first category set (which was proved by M. Fabian and D. Preiss for much more general spaces $X$), but it is even $\sigma$-porous in a rather strong sense. In fact, we prove the result even for a stronger notion of uniform intermediate derivative which was defined by J.R. Giles and S. Sciffer.
Classification : 46G05, 58C20
Keywords: Lipschitz function; intermediate derivative; $\sigma$-porous set; superreflexive Banach space
@article{CMUC_1999__40_4_a16,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {A note on intermediate differentiability of {Lipschitz} functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {795--799},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1756555},
     zbl = {1010.46042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a16/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - A note on intermediate differentiability of Lipschitz functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 795
EP  - 799
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a16/
LA  - en
ID  - CMUC_1999__40_4_a16
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T A note on intermediate differentiability of Lipschitz functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 795-799
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a16/
%G en
%F CMUC_1999__40_4_a16
Zajíček, Luděk. A note on intermediate differentiability of Lipschitz functions. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 795-799. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a16/