$C_p(I)$ is not subsequential
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 785-788.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.
Classification : 03E35, 54A20, 54A25, 54A35
Keywords: $C_p$-space; sequential; subsequential
@article{CMUC_1999__40_4_a14,
     author = {Malykhin, V. I.},
     title = {$C_p(I)$ is not subsequential},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {785--788},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1756553},
     zbl = {1009.54033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a14/}
}
TY  - JOUR
AU  - Malykhin, V. I.
TI  - $C_p(I)$ is not subsequential
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 785
EP  - 788
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a14/
LA  - en
ID  - CMUC_1999__40_4_a14
ER  - 
%0 Journal Article
%A Malykhin, V. I.
%T $C_p(I)$ is not subsequential
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 785-788
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a14/
%G en
%F CMUC_1999__40_4_a14
Malykhin, V. I. $C_p(I)$ is not subsequential. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 785-788. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a14/