The Tamano Theorem in $\Cal MAP$
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 755-770.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we continue with the study of paracompact maps introduced in [1]. We give two external characterizations for paracompact maps including a characterization analogous to The Tamano Theorem in the category $\Cal TOP$ (of topological spaces and continuous maps as morphisms). A necessary and sufficient condition for the Tychonoff product of a closed map and a compact map to be closed is also given.
Classification : 54B30, 54C05, 54C10, 54C99
Keywords: fibrewise topology; continuous map; closed map; paracompact map
@article{CMUC_1999__40_4_a11,
     author = {Buhagiar, David},
     title = {The {Tamano} {Theorem} in $\Cal MAP$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {755--770},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1756550},
     zbl = {1010.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a11/}
}
TY  - JOUR
AU  - Buhagiar, David
TI  - The Tamano Theorem in $\Cal MAP$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 755
EP  - 770
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a11/
LA  - en
ID  - CMUC_1999__40_4_a11
ER  - 
%0 Journal Article
%A Buhagiar, David
%T The Tamano Theorem in $\Cal MAP$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 755-770
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a11/
%G en
%F CMUC_1999__40_4_a11
Buhagiar, David. The Tamano Theorem in $\Cal MAP$. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 755-770. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a11/