Connectedness and local connectedness of topological groups and extensions
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 735-753.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that both the free topological group $F(X)$ and the free Abelian topological group $A(X)$ on a connected locally connected space $X$ are locally connected. For the Graev's modification of the groups $F(X)$ and $A(X)$, the corresponding result is more symmetric: the groups $F\Gamma(X)$ and $A\Gamma(X)$ are connected and locally connected if $X$ is. However, the free (Abelian) totally bounded group $FTB(X)$ (resp., $ATB(X)$) is not locally connected no matter how ``good'' a space $X$ is. The above results imply that every non-trivial continuous homomorphism of $A(X)$ to the additive group of reals, with $X$ connected and locally connected, is open. We also prove that any dense in itself subspace of the Sorgenfrey line has a Urysohn connectification. If $D$ is a dense subset of $\{0,1\}^{\frak c}$ of power less than $\frak c$, then $D$ has a Urysohn connectification of the same cardinality as $D$. We also strengthen a result of [1] for second countable Tychonoff spaces without open compact subspaces proving that it is possible to find a compact metrizable connectification of such a space preserving its dimension if it is positive.
Classification : 22A05, 54C10, 54C25, 54D06, 54D25, 54H11
Keywords: connected; locally connected; free topological group; Pontryagin's duality; pseudo-open mapping; open mapping; Urysohn space; connectification
@article{CMUC_1999__40_4_a10,
     author = {Alas, O. T. and Tka\v{c}enko, M. G. and Tkachuk, V. V. and Wilson, R. G.},
     title = {Connectedness and local connectedness of topological groups and extensions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {735--753},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {1999},
     mrnumber = {1756549},
     zbl = {1010.54043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a10/}
}
TY  - JOUR
AU  - Alas, O. T.
AU  - Tkačenko, M. G.
AU  - Tkachuk, V. V.
AU  - Wilson, R. G.
TI  - Connectedness and local connectedness of topological groups and extensions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 735
EP  - 753
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a10/
LA  - en
ID  - CMUC_1999__40_4_a10
ER  - 
%0 Journal Article
%A Alas, O. T.
%A Tkačenko, M. G.
%A Tkachuk, V. V.
%A Wilson, R. G.
%T Connectedness and local connectedness of topological groups and extensions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 735-753
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a10/
%G en
%F CMUC_1999__40_4_a10
Alas, O. T.; Tkačenko, M. G.; Tkachuk, V. V.; Wilson, R. G. Connectedness and local connectedness of topological groups and extensions. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 4, pp. 735-753. http://geodesic.mathdoc.fr/item/CMUC_1999__40_4_a10/