Pervasive algebras on planar compacts
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 491-494.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize compact sets $X$ in the Riemann sphere $\Bbb S$ not separating $\Bbb S$ for which the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$, restricted to the set $X$, is pervasive on $X$.
Classification : 30E10, 46J10
Keywords: compact Hausdorff space $X$; the sup-norm algebra $C(X)$ of all complex-valued continuous functions on $X$; its closed subalgebras (called function algebras); pervasive algebras; the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$
@article{CMUC_1999__40_3_a8,
     author = {\v{C}erych, Jan},
     title = {Pervasive algebras on planar compacts},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {491--494},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732486},
     zbl = {1010.46051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a8/}
}
TY  - JOUR
AU  - Čerych, Jan
TI  - Pervasive algebras on planar compacts
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 491
EP  - 494
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a8/
LA  - en
ID  - CMUC_1999__40_3_a8
ER  - 
%0 Journal Article
%A Čerych, Jan
%T Pervasive algebras on planar compacts
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 491-494
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a8/
%G en
%F CMUC_1999__40_3_a8
Čerych, Jan. Pervasive algebras on planar compacts. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 491-494. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a8/