Nonuniqueness for some linear oblique derivative problems for elliptic equations
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 477-481.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well-known that the ``standard'' oblique derivative problem, $\Delta u = 0$ in $\Omega$, $\partial u/\partial \nu-u=0$ on $\partial\Omega$ ($\nu$ is the unit inner normal) has a unique solution even when the boundary condition is not assumed to hold on the entire boundary. When the boundary condition is modified to satisfy an obliqueness condition, the behavior at a single boundary point can change the uniqueness result. We give two simple examples to demonstrate what can happen.
Classification : 35A05, 35B65, 35J25
Keywords: elliptic equations; uniqueness; a priori estimates; linear problems; boundary value problems
@article{CMUC_1999__40_3_a6,
     author = {Lieberman, Gary M.},
     title = {Nonuniqueness for some linear oblique derivative problems for elliptic equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {477--481},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732488},
     zbl = {1064.35508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a6/}
}
TY  - JOUR
AU  - Lieberman, Gary M.
TI  - Nonuniqueness for some linear oblique derivative problems for elliptic equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 477
EP  - 481
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a6/
LA  - en
ID  - CMUC_1999__40_3_a6
ER  - 
%0 Journal Article
%A Lieberman, Gary M.
%T Nonuniqueness for some linear oblique derivative problems for elliptic equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 477-481
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a6/
%G en
%F CMUC_1999__40_3_a6
Lieberman, Gary M. Nonuniqueness for some linear oblique derivative problems for elliptic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 477-481. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a6/