An identity related to centralizers in semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 447-456.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
Classification : 16A12, 16A68, 16A72, 16N60, 16R50, 16W10, 16W20
Keywords: prime ring; semiprime ring; derivation; Jordan derivation; left (right) centralizer; left (right) Jordan centralizer
@article{CMUC_1999__40_3_a4,
     author = {Vukman, Joso},
     title = {An identity related to centralizers in semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {447--456},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732490},
     zbl = {1014.16021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a4/}
}
TY  - JOUR
AU  - Vukman, Joso
TI  - An identity related to centralizers in semiprime rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 447
EP  - 456
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a4/
LA  - en
ID  - CMUC_1999__40_3_a4
ER  - 
%0 Journal Article
%A Vukman, Joso
%T An identity related to centralizers in semiprime rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 447-456
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a4/
%G en
%F CMUC_1999__40_3_a4
Vukman, Joso. An identity related to centralizers in semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 447-456. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a4/