On a generalization of $QI$-rings
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 441-446
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper rings for which every $s$-torsion quasi-injective module is weakly $s$-divisible for a hereditary preradical $s$ are characterized in terms of the properties of the corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory these rings coincide with $TQI$-rings investigated by J. Ahsan and E. Enochs in [1]. Our aim was to generalize some results concerning $QI$-rings obtained by J.S. Golan and S.R. L'opez-Permouth in [12]. A characterization of the $QI$-property in the category $\sigma[M]$ then follows as a consequence.
Classification :
16D50, 16N80, 16S90
Keywords: $s$-$QI$-rings; $s$-stable preradicals; weakly $s$-divisible modules; $s$-tight modules
Keywords: $s$-$QI$-rings; $s$-stable preradicals; weakly $s$-divisible modules; $s$-tight modules
@article{CMUC_1999__40_3_a3,
author = {Jir\'asko, J.},
title = {On a generalization of $QI$-rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {441--446},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1999},
mrnumber = {1732491},
zbl = {1014.16003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/}
}
Jirásko, J. On a generalization of $QI$-rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 441-446. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/