On a generalization of $QI$-rings
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 441-446.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper rings for which every $s$-torsion quasi-injective module is weakly $s$-divisible for a hereditary preradical $s$ are characterized in terms of the properties of the corresponding lattice of the (hereditary) preradicals. In case of a stable torsion theory these rings coincide with $TQI$-rings investigated by J. Ahsan and E. Enochs in [1]. Our aim was to generalize some results concerning $QI$-rings obtained by J.S. Golan and S.R. L'opez-Permouth in [12]. A characterization of the $QI$-property in the category $\sigma[M]$ then follows as a consequence.
Classification : 16D50, 16N80, 16S90
Keywords: $s$-$QI$-rings; $s$-stable preradicals; weakly $s$-divisible modules; $s$-tight modules
@article{CMUC_1999__40_3_a3,
     author = {Jir\'asko, J.},
     title = {On a generalization of $QI$-rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {441--446},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732491},
     zbl = {1014.16003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/}
}
TY  - JOUR
AU  - Jirásko, J.
TI  - On a generalization of $QI$-rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 441
EP  - 446
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/
LA  - en
ID  - CMUC_1999__40_3_a3
ER  - 
%0 Journal Article
%A Jirásko, J.
%T On a generalization of $QI$-rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 441-446
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/
%G en
%F CMUC_1999__40_3_a3
Jirásko, J. On a generalization of $QI$-rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 441-446. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a3/