Characteristic zero loop space homology for certain two-cones
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 593-597.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a principal ideal domain $R$ of characteristic zero, containing 1/2, and a two-cone $X$ of appropriate connectedness and dimension, we present a sufficient algebraic condition, in terms of Adams-Hilton models, for the Hopf algebra $FH(\Omega X; R)$ to be isomorphic with the universal enveloping algebra of some $R$-free graded Lie algebra; as usual, $F$ stands for free part, $H$ for homology, and $\Omega$ for the Moore loop space functor.
Classification : 17B35, 17B70, 55P35, 55P62, 57T05
Keywords: two-cone; Moore loop space; differential graded Lie algebra; free Lie algebra on a graded module; universal enveloping algebra; Hopf algebra
@article{CMUC_1999__40_3_a17,
     author = {Popescu, Calin},
     title = {Characteristic zero loop space homology for certain two-cones},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {593--597},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732477},
     zbl = {1009.55005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a17/}
}
TY  - JOUR
AU  - Popescu, Calin
TI  - Characteristic zero loop space homology for certain two-cones
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 593
EP  - 597
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a17/
LA  - en
ID  - CMUC_1999__40_3_a17
ER  - 
%0 Journal Article
%A Popescu, Calin
%T Characteristic zero loop space homology for certain two-cones
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 593-597
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a17/
%G en
%F CMUC_1999__40_3_a17
Popescu, Calin. Characteristic zero loop space homology for certain two-cones. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 593-597. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a17/