Linear programming duality and morphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 577-592.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas' Lemma) and Minty's Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas' Lemma. This research helped to isolate perhaps the most natural definition of strong maps for oriented matroids.
Classification : 05B35, 05C99, 18B99, 52C40, 90C05, 90C27, 90C46
Keywords: oriented matroids; strong maps; homomorphisms; duality
@article{CMUC_1999__40_3_a16,
     author = {Hochst\"attler, Winfried and Ne\v{s}et\v{r}il, Jaroslav},
     title = {Linear programming duality and morphisms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {577--592},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1999},
     mrnumber = {1732478},
     zbl = {1065.05027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/}
}
TY  - JOUR
AU  - Hochstättler, Winfried
AU  - Nešetřil, Jaroslav
TI  - Linear programming duality and morphisms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 577
EP  - 592
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/
LA  - en
ID  - CMUC_1999__40_3_a16
ER  - 
%0 Journal Article
%A Hochstättler, Winfried
%A Nešetřil, Jaroslav
%T Linear programming duality and morphisms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 577-592
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/
%G en
%F CMUC_1999__40_3_a16
Hochstättler, Winfried; Nešetřil, Jaroslav. Linear programming duality and morphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 577-592. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/