Linear programming duality and morphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 577-592
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas' Lemma) and Minty's Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas' Lemma. This research helped to isolate perhaps the most natural definition of strong maps for oriented matroids.
Classification :
05B35, 05C99, 18B99, 52C40, 90C05, 90C27, 90C46
Keywords: oriented matroids; strong maps; homomorphisms; duality
Keywords: oriented matroids; strong maps; homomorphisms; duality
@article{CMUC_1999__40_3_a16,
author = {Hochst\"attler, Winfried and Ne\v{s}et\v{r}il, Jaroslav},
title = {Linear programming duality and morphisms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {577--592},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1999},
mrnumber = {1732478},
zbl = {1065.05027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/}
}
TY - JOUR AU - Hochstättler, Winfried AU - Nešetřil, Jaroslav TI - Linear programming duality and morphisms JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 577 EP - 592 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/ LA - en ID - CMUC_1999__40_3_a16 ER -
Hochstättler, Winfried; Nešetřil, Jaroslav. Linear programming duality and morphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 3, pp. 577-592. http://geodesic.mathdoc.fr/item/CMUC_1999__40_3_a16/