Extraresolvability and cardinal arithmetic
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 279-292.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Following Malykhin, we say that a space $X$ is {\it extraresolvable\/} if $X$ contains a family $\Cal D$ of dense subsets such that $|\Cal D| > \Delta(X)$ and the intersection of every two elements of $\Cal D$ is nowhere dense, where $\Delta(X) = \min \{|U|: U$ is a nonempty open subset of $X\}$ is the {\it dispersion character\/} of $X$. We show that, for every cardinal $\kappa$, there is a compact extraresolvable space of size and dispersion character $2^\kappa$. In connection with some cardinal inequalities, we prove the equivalence of the following statements: \newline 1) $2^\kappa 2^{{\kappa}^{+}}$, 2) $(\kappa^{+})^{\kappa}$ is extraresolvable and 3) $A(\kappa^{+})^{\kappa}$ is extraresolvable, where $A(\kappa^{+})$ is the one-point compactification of the discrete space $\kappa^{+}$. For a regular cardinal $\kappa \geq \omega$, we show that the following are equivalent: 1) $2^{ \kappa} 2^{\kappa}$; 2) $G(\kappa,\kappa)$ is extraresolvable; 3) $G(\kappa,\kappa)^\lambda$ is extraresolvable for all $\lambda \kappa$; and 4) there exists a space $X$ such that $X^\lambda$ is extraresolvable, for all $\lambda \kappa$, and $X^\kappa$ is not extraresolvable, where $G(\kappa,\kappa)= \{x \in \{0,1\}^\kappa : |\{ \xi \kappa : x_\xi \neq 0 \}| \kappa \}$ for every $\kappa \geq \omega$. It is also shown that if $X$ is extraresolvable and $\Delta(X) = |X|$, then all powers of $X$ have a dense extraresolvable subset, and $\lambda^\kappa$ contains a dense extraresolvable subspace for every cardinal $\lambda \geq 2$ and for every infinite cardinal $\kappa$. For an infinite cardinal $\kappa$, if $2^\kappa > {\frak c}$, then there is a totally bounded, connected, extraresolvable, topological Abelian group of size and dispersion character equal to $\kappa$, and if $\kappa = \kappa^\omega$, then there is an $\omega$-bounded, normal, connected, extraresolvable, topological Abelian group of size and dispersion character equal to $\kappa$.
Classification : 03E35, 54A25, 54A35, 54F99
Keywords: extraresolvable; $\kappa$-resolvable
@article{CMUC_1999__40_2_a9,
     author = {Alas, O. T. and Garc{\'\i}a-Ferreira, S. and Tomita, A. H.},
     title = {Extraresolvability and cardinal arithmetic},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {279--292},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1999},
     mrnumber = {1732649},
     zbl = {0976.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a9/}
}
TY  - JOUR
AU  - Alas, O. T.
AU  - García-Ferreira, S.
AU  - Tomita, A. H.
TI  - Extraresolvability and cardinal arithmetic
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 279
EP  - 292
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a9/
LA  - en
ID  - CMUC_1999__40_2_a9
ER  - 
%0 Journal Article
%A Alas, O. T.
%A García-Ferreira, S.
%A Tomita, A. H.
%T Extraresolvability and cardinal arithmetic
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 279-292
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a9/
%G en
%F CMUC_1999__40_2_a9
Alas, O. T.; García-Ferreira, S.; Tomita, A. H. Extraresolvability and cardinal arithmetic. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 279-292. http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a9/