Lattice points in super spheres
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 373-391.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p$.
Classification : 11P21
Keywords: lattice points; exponential sums
@article{CMUC_1999__40_2_a19,
     author = {Kr\"atzel, Ekkehard},
     title = {Lattice points in super spheres},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {373--391},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1999},
     mrnumber = {1732659},
     zbl = {0993.11050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a19/}
}
TY  - JOUR
AU  - Krätzel, Ekkehard
TI  - Lattice points in super spheres
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 373
EP  - 391
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a19/
LA  - en
ID  - CMUC_1999__40_2_a19
ER  - 
%0 Journal Article
%A Krätzel, Ekkehard
%T Lattice points in super spheres
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 373-391
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a19/
%G en
%F CMUC_1999__40_2_a19
Krätzel, Ekkehard. Lattice points in super spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 373-391. http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a19/