Condensations of Cartesian products
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 355-365.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider when one-to-one continuous mappings can improve normality-type and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space $X$ there is a $\mu$ such that $X^\mu$ can be condensed onto a normal ($\sigma$-compact) space if and only if there is no measurable cardinal. For any Tychonoff space $X$ and any cardinal $\nu$ there is a Tychonoff space $M$ which preserves many properties of $X$ and such that any one-to-one continuous image of $M^\mu$, $\mu\leq\nu$, contains a closed copy of $X^\mu$. For any infinite compact space $K$ there is a normal space $X$ such that $X\times K$ cannot be mapped one-to-one onto a normal space.
Classification : 54A10, 54B10, 54C10
Keywords: condensation; one-to-one; compact; measurable
@article{CMUC_1999__40_2_a17,
     author = {Pavlov, Oleg},
     title = {Condensations of {Cartesian} products},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {355--365},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1999},
     mrnumber = {1732657},
     zbl = {0976.54008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a17/}
}
TY  - JOUR
AU  - Pavlov, Oleg
TI  - Condensations of Cartesian products
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 355
EP  - 365
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a17/
LA  - en
ID  - CMUC_1999__40_2_a17
ER  - 
%0 Journal Article
%A Pavlov, Oleg
%T Condensations of Cartesian products
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 355-365
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a17/
%G en
%F CMUC_1999__40_2_a17
Pavlov, Oleg. Condensations of Cartesian products. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 355-365. http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a17/