On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 343-353.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that the statement CCFC = ``{\it the character of a maximal free filter $F$ of closed sets in a $T_1$ space $(X,T)$ is not countable\/}'' is equivalent to the {\it Countable Multiple Choice Axiom\/} CMC and, the axiom of choice AC is equivalent to the statement CFE$_0$ = ``{\it closed filters in a $T_0$ space $(X,T)$ extend to maximal closed filters\/}''. We also show that AC is equivalent to each of the assertions: \newline ``{\it every closed filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal closed filter with a well orderable filter base\/}'', \newline ``{\it for every set $A\neq \emptyset $, every filter $\Cal {F} \subseteq \Cal {P}(A)$ extends to an ultrafilter with a well orderable filter base\/}'' and \newline ``{\it every open filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal open filter with a well orderable filter base\/}''.
Classification : 03E25, 54A20, 54A35, 54D10
Keywords: closed filters; bases for filters; characters of filters; ultrafilters
@article{CMUC_1999__40_2_a16,
     author = {Keremedis, Kyriakos and Tachtsis, Eleftherios},
     title = {On the extensibility of closed filters in {T}$_1$ spaces and the existence of well orderable filter bases},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1999},
     mrnumber = {1732656},
     zbl = {0977.03025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a16/}
}
TY  - JOUR
AU  - Keremedis, Kyriakos
AU  - Tachtsis, Eleftherios
TI  - On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 343
EP  - 353
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a16/
LA  - en
ID  - CMUC_1999__40_2_a16
ER  - 
%0 Journal Article
%A Keremedis, Kyriakos
%A Tachtsis, Eleftherios
%T On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 343-353
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a16/
%G en
%F CMUC_1999__40_2_a16
Keremedis, Kyriakos; Tachtsis, Eleftherios. On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 343-353. http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a16/