An independency result in connectification theory
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 331-334.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC.
Classification : 03E35, 54A35, 54C25, 54D05, 54D25
Keywords: connectifiable; perfect; feebly compact
@article{CMUC_1999__40_2_a14,
     author = {Fedeli, Alessandro and Le Donne, Attilio},
     title = {An independency result in connectification theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {331--334},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1999},
     mrnumber = {1732654},
     zbl = {0976.54018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a14/}
}
TY  - JOUR
AU  - Fedeli, Alessandro
AU  - Le Donne, Attilio
TI  - An independency result in connectification theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 331
EP  - 334
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a14/
LA  - en
ID  - CMUC_1999__40_2_a14
ER  - 
%0 Journal Article
%A Fedeli, Alessandro
%A Le Donne, Attilio
%T An independency result in connectification theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 331-334
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a14/
%G en
%F CMUC_1999__40_2_a14
Fedeli, Alessandro; Le Donne, Attilio. An independency result in connectification theory. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 2, pp. 331-334. http://geodesic.mathdoc.fr/item/CMUC_1999__40_2_a14/