Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 107-119.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Some characterizations of inner product spaces in terms of Birkhoff orthogonality are given. In this connection we define the rectangular modulus $\mu_{_X}$ of the normed space $X$. The values of the rectangular modulus at some noteworthy points are well-known constants of $X$. Characterizations (involving $\mu_{_X})$ of inner product spaces of dimension $\geq 2$, respectively $\geq 3$, are given and the behaviour of $\mu_{_X}$ is studied.
Classification : 46B04, 46B20, 46C15
Keywords: characterizations of inner product spaces; orthogonality; moduli of Banach spaces
@article{CMUC_1999__40_1_a7,
     author = {\c{S}erb, Ioan},
     title = {Rectangular modulus, {Birkhoff} orthogonality and characterizations of inner product spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1999},
     mrnumber = {1715205},
     zbl = {1060.46506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a7/}
}
TY  - JOUR
AU  - Şerb, Ioan
TI  - Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 107
EP  - 119
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a7/
LA  - en
ID  - CMUC_1999__40_1_a7
ER  - 
%0 Journal Article
%A Şerb, Ioan
%T Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 107-119
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a7/
%G en
%F CMUC_1999__40_1_a7
Şerb, Ioan. Rectangular modulus, Birkhoff orthogonality and characterizations of inner product spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a7/